Initial time difference quasilinearization for Caputo Fractional Differential Equations

نویسنده

  • Ali Yakar
چکیده

Correspondence: [email protected]. tr Department of Statistics, Gaziosmanpasa University, Tasliciftlik Campus, 60250 Tokat, Turkey Abstract This paper deals with an application of the method of quasilinearization by not demanding the Hölder continuity assumption of functions involved and by choosing upper and lower solutions with initial time difference for nonlinear Caputo fractional differential equations. Thus, we construct monotone flows that are generated by solutions of linear fractional differential equations which converge uniformly and quadratically to the unique solution of the problem. Also, necessary comparison result concerning lower and upper solutions are proved without using Hölder continuity. Mathematics subject classification: 34A12, 34A45, 34C11.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Quasilinearization Method for Hybrid Caputo Fractional Differential Equations

In this paper we present the methods of Quasilinearization and Generalized Quasilinearization for hybrid Caputo fractional differential equations which are Caputo fractional differential equations with fixed moments of impulse. In order to prove this results we use the weakened assumption of -continuity in place of local Hölder continuity.

متن کامل

A distinct numerical approach for the solution of some kind of initial value problem involving nonlinear q-fractional differential equations

The fractional calculus deals with the generalization of integration and differentiation of integer order to those ones of any order. The q-fractional differential equation usually describe the physical process imposed on the time scale set Tq. In this paper, we first propose a difference formula for discretizing the fractional q-derivative  of Caputo type with order  and scale index . We es...

متن کامل

On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales

n this paper, at first the  concept of Caputo fractionalderivative is generalized on time scales. Then the fractional orderdifferential equations are introduced on time scales. Finally,sufficient and necessary conditions are presented for the existenceand uniqueness of solution of initial valueproblem including fractional order differential equations.

متن کامل

A numerical method for solving a class of distributed order time-fractional diffusion partial differential equations according to Caputo-Prabhakar fractional derivative

In this paper, a time-fractional diffusion equation of distributed order including the Caputo-Prabhakar fractional derivative is studied. We use a numerical method based on the linear B-spline interpolation and finite difference method to study the solutions of these types of fractional equations. Finally, some numerical examples are presented for the performance and accuracy of the proposed nu...

متن کامل

Existence of solutions of boundary value problems for Caputo fractional differential equations on time scales

‎In this paper‎, ‎we study the boundary-value problem of fractional‎ ‎order dynamic equations on time scales‎, ‎$$‎ ‎^c{Delta}^{alpha}u(t)=f(t,u(t)),;;tin‎ ‎[0,1]_{mathbb{T}^{kappa^{2}}}:=J,;;1

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012